3.3.67 \(\int \frac {\sqrt {d \csc (a+b x)}}{(c \sec (a+b x))^{3/2}} \, dx\) [267]

Optimal. Leaf size=92 \[ \frac {d}{b c \sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)}}+\frac {\sqrt {d \csc (a+b x)} F\left (\left .a-\frac {\pi }{4}+b x\right |2\right ) \sqrt {c \sec (a+b x)} \sqrt {\sin (2 a+2 b x)}}{2 b c^2} \]

[Out]

d/b/c/(d*csc(b*x+a))^(1/2)/(c*sec(b*x+a))^(1/2)-1/2*(sin(a+1/4*Pi+b*x)^2)^(1/2)/sin(a+1/4*Pi+b*x)*EllipticF(co
s(a+1/4*Pi+b*x),2^(1/2))*(d*csc(b*x+a))^(1/2)*(c*sec(b*x+a))^(1/2)*sin(2*b*x+2*a)^(1/2)/b/c^2

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 92, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {2708, 2710, 2653, 2720} \begin {gather*} \frac {\sqrt {\sin (2 a+2 b x)} F\left (\left .a+b x-\frac {\pi }{4}\right |2\right ) \sqrt {c \sec (a+b x)} \sqrt {d \csc (a+b x)}}{2 b c^2}+\frac {d}{b c \sqrt {c \sec (a+b x)} \sqrt {d \csc (a+b x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[d*Csc[a + b*x]]/(c*Sec[a + b*x])^(3/2),x]

[Out]

d/(b*c*Sqrt[d*Csc[a + b*x]]*Sqrt[c*Sec[a + b*x]]) + (Sqrt[d*Csc[a + b*x]]*EllipticF[a - Pi/4 + b*x, 2]*Sqrt[c*
Sec[a + b*x]]*Sqrt[Sin[2*a + 2*b*x]])/(2*b*c^2)

Rule 2653

Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[Sqrt[Sin[2*
e + 2*f*x]]/(Sqrt[a*Sin[e + f*x]]*Sqrt[b*Cos[e + f*x]]), Int[1/Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b,
e, f}, x]

Rule 2708

Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-a)*(a*Csc[
e + f*x])^(m - 1)*((b*Sec[e + f*x])^(n + 1)/(b*f*(m + n))), x] + Dist[(n + 1)/(b^2*(m + n)), Int[(a*Csc[e + f*
x])^m*(b*Sec[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && LtQ[n, -1] && NeQ[m + n, 0] && Integers
Q[2*m, 2*n]

Rule 2710

Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(a*Csc[e + f*
x])^m*(b*Sec[e + f*x])^n*(a*Sin[e + f*x])^m*(b*Cos[e + f*x])^n, Int[1/((a*Sin[e + f*x])^m*(b*Cos[e + f*x])^n),
 x], x] /; FreeQ[{a, b, e, f, m, n}, x] && IntegerQ[m - 1/2] && IntegerQ[n - 1/2]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin {align*} \int \frac {\sqrt {d \csc (a+b x)}}{(c \sec (a+b x))^{3/2}} \, dx &=\frac {d}{b c \sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)}}+\frac {\int \sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)} \, dx}{2 c^2}\\ &=\frac {d}{b c \sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)}}+\frac {\left (\sqrt {c \cos (a+b x)} \sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)} \sqrt {d \sin (a+b x)}\right ) \int \frac {1}{\sqrt {c \cos (a+b x)} \sqrt {d \sin (a+b x)}} \, dx}{2 c^2}\\ &=\frac {d}{b c \sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)}}+\frac {\left (\sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)} \sqrt {\sin (2 a+2 b x)}\right ) \int \frac {1}{\sqrt {\sin (2 a+2 b x)}} \, dx}{2 c^2}\\ &=\frac {d}{b c \sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)}}+\frac {\sqrt {d \csc (a+b x)} F\left (\left .a-\frac {\pi }{4}+b x\right |2\right ) \sqrt {c \sec (a+b x)} \sqrt {\sin (2 a+2 b x)}}{2 b c^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.70, size = 84, normalized size = 0.91 \begin {gather*} \frac {d \left (1+\cos (2 (a+b x))-\left (-\cot ^2(a+b x)\right )^{3/4} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {3}{2};\csc ^2(a+b x)\right )\right ) \sec ^3(a+b x)}{2 b \sqrt {d \csc (a+b x)} (c \sec (a+b x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d*Csc[a + b*x]]/(c*Sec[a + b*x])^(3/2),x]

[Out]

(d*(1 + Cos[2*(a + b*x)] - (-Cot[a + b*x]^2)^(3/4)*Hypergeometric2F1[1/2, 3/4, 3/2, Csc[a + b*x]^2])*Sec[a + b
*x]^3)/(2*b*Sqrt[d*Csc[a + b*x]]*(c*Sec[a + b*x])^(3/2))

________________________________________________________________________________________

Maple [A]
time = 35.59, size = 195, normalized size = 2.12

method result size
default \(\frac {\left (-\sin \left (b x +a \right ) \sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {\cos \left (b x +a \right )-1+\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {-1+\cos \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \EllipticF \left (\sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}, \frac {\sqrt {2}}{2}\right )+\left (\cos ^{2}\left (b x +a \right )\right ) \sqrt {2}-\sqrt {2}\, \cos \left (b x +a \right )\right ) \sqrt {\frac {d}{\sin \left (b x +a \right )}}\, \sin \left (b x +a \right ) \sqrt {2}}{2 b \left (-1+\cos \left (b x +a \right )\right ) \cos \left (b x +a \right )^{2} \left (\frac {c}{\cos \left (b x +a \right )}\right )^{\frac {3}{2}}}\) \(195\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*csc(b*x+a))^(1/2)/(c*sec(b*x+a))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/2/b*(-sin(b*x+a)*(-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2)*((cos(b*x+a)-1+sin(b*x+a))/sin(b*x+a))^(1/2)*
((-1+cos(b*x+a))/sin(b*x+a))^(1/2)*EllipticF((-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))+cos(b*
x+a)^2*2^(1/2)-2^(1/2)*cos(b*x+a))*(d/sin(b*x+a))^(1/2)*sin(b*x+a)/(-1+cos(b*x+a))/cos(b*x+a)^2/(c/cos(b*x+a))
^(3/2)*2^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*csc(b*x+a))^(1/2)/(c*sec(b*x+a))^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(d*csc(b*x + a))/(c*sec(b*x + a))^(3/2), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*csc(b*x+a))^(1/2)/(c*sec(b*x+a))^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(d*csc(b*x + a))*sqrt(c*sec(b*x + a))/(c^2*sec(b*x + a)^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {d \csc {\left (a + b x \right )}}}{\left (c \sec {\left (a + b x \right )}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*csc(b*x+a))**(1/2)/(c*sec(b*x+a))**(3/2),x)

[Out]

Integral(sqrt(d*csc(a + b*x))/(c*sec(a + b*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*csc(b*x+a))^(1/2)/(c*sec(b*x+a))^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(d*csc(b*x + a))/(c*sec(b*x + a))^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {\frac {d}{\sin \left (a+b\,x\right )}}}{{\left (\frac {c}{\cos \left (a+b\,x\right )}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d/sin(a + b*x))^(1/2)/(c/cos(a + b*x))^(3/2),x)

[Out]

int((d/sin(a + b*x))^(1/2)/(c/cos(a + b*x))^(3/2), x)

________________________________________________________________________________________